Interactions of the IGS reprocessing and the IGS antenna phase center model

Ralf Schmid, Peter Steigenberger, Urs Hugentobler

Technische Universität München, Germany

Rolf Dach

University of Bern, Switzerland

Martin Schmitz

Geo++ GmbH, Garbsen, Germany

Florian Dilßner

European Space Operations Centre, Darmstadt, Germany

Transition to absolute phase center modeling

	Re	eceiver ant	Satellite antenna		
Model	PCO	PCV	Radome	PCO	PCV
igs01.pcv (1996-2006)	relative to reference antenna AOAD/M_T		ignored	block- specific	ignored
igs05.atx (2006-2010)	absolute, i.e., independent of a reference antenna		considered, if calibration available	satellite- specific	block- specific

Discontinuities in time series (week 1400)

TRF scale difference w.r.t. IGb00/IGS05

Timeline: antenna model vs. IGS reprocessing

2005 Estimation of GPS satellite antenna corrections with scale fixed to IGb00 (based on **relative** receiver antenna corrections); radome calibrations added afterwards

2006 GLONASS satellite antenna corr. from **separate** solution

5 Nov **Switch** from relative to absolute antenna model and from 2006 IGb00 to IGS05; IGS05 station coordinates corrected for differences from parallel AC processing

Feb Start of first IGS reprocessing campaign repro1 with igs05.atx **unchanged**; repro1 period: 1994-**2007**

2010 Compilation of igs08.atx using repro1 SINEX files and operational solutions (2008-2010)

Benefit from IGS reprocessing

- Repair of discontinuities (e.g., in week 1400)
- Update of receiver antenna corrections (up to five years old) before or after the reprocessing campaign
- repro1 started without an update of the antenna model
 - pros: consistency between repro1 and operational solutions
 - cons: inconsistency between new reference frame and antenna model, if update afterwards
- Update of satellite antenna corrections
 - new satellite-specific z-offsets for latest satellites
 - based on longer time span: 11 years → 16 years
 - more analysis centers: $2 \rightarrow 3-5$ (GPS); $1 \rightarrow 2$ (GLONASS)

First IGS reprocessing campaign repro1

Phase center estimates in repro1 AC SINEX files:

Analysis	GPS satellite antennas		GLONASS satellite antennas		
Center	PCO	PCV	PCO	PCV	
CODE					
NRCan					
ESA		SINEX format	GLONASS observation data will probably be considered for follow-up campaign repro2		
GFZ		extension			
JPL		necessary			
MIT					
NGS		derivative → no update	→ separate solution necessary		
PDR					
SIO					

GPS satellite antenna *z*-offsets

Mean **bias**: 5.4 cm

- dm level biases between individual analysis centers
- estimation of satellite-specific z-offsets for the latest satellites
- deviation of about 15 cm from block mean value for SVN55

GLONASS satellite antenna corrections

AC Z-Offsets minus IGS05 Z-offsets

Time span:

ESA: 1.5 a

CODE: 6.5 a

Mean **bias**:

6.3 cm

- GLONASS constellation completely changed since 2005/06
- scale difference partly due to differing albedo modeling
- impact on station coordinates: < 1 mm (small impact of GLONASS)

Receiver antenna calibrations

GPS:

- additional robot calibrations (e.g., for TPSCR3_GGD)
- impact on station coordinates: up to several mm
- update for existing robot calibrations

Statistics for stations in the IGS network (December 2009):

Model	absolute calibration	converted field calibration	uncalibrated antenna/ radome combination	
igs05.atx	62%	18%	20%	
igs08.atx	69%	11%	20%	

GLONASS:

- GLONASS-specific calibrations not considered so far
- available for about 60% of the combined GPS/GLONASS stations
- impact on station coordinates: < 1 mm

Timeline for igs08.atx

- Jan/Feb 2010: generation of IGS08 reference frame
- Feb/Mar 2010: back-solve repro1 (1994-2007) SINEX files and operational solutions (2008-2010) with ITRF2008/IGS08 kept fixed to get GPS satellite antenna z-offsets
- Mar 2010(?): long-time combined solutions by CODE and ESA with GPS z-offsets kept fixed to get GLONASS satellite antenna z-offsets/PCVs
- Apr 2010: compilation of igs08.atx (satellite and receiver antenna corrections, including GLONASS-specific values)
- Apr/May 2010: analysis of coordinate jumps due to antenna model update by certain analysis centers
- May 2010: adoption of new IGS reference frame and igs08.atx in operational solutions

Conclusions

- Consistency between ITRF2008/IGS08 and igs08.atx will be far better than between IGS05 and igs05.atx
- Ex post update of receiver antenna calibrations causes slight inconsistencies between reference frame and igs08.atx
- Transition to igs05.atx was much more dramatic, but accompanied by an extensive parallel AC processing
- Improved percentage of IGS stations with state-of-the-art calibrations, whereas uncalibrated radomes remain a problem
- Highly improved GLONASS satellite antenna corrections (more satellites/tracking stations/analysis centers)
- SINEX format extension desirable in order to estimate satellite antenna PCVs from repro2 SINEX files

